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ABSTRACT

Pattern recognition methods have become a powerful tool for
segmentation in the sense that they are capable of automatically
building a segmentation model from training images. However,
they present several difficulties, such as requirement of a large set
of training data, robustness to imaging conditions not present in the
training set, and complexity of the search process. In this paper we
tackle the second problem by using a deep belief network learning
architecture, and the third problem by resorting to efficient search-
ing algorithms. As an example, we illustrate the performance of
the algorithm in lip segmentation and tracking in video sequences.
Quantitative comparison using different strategies for the search
process are presented. We also compare our approach to a state-
of-the-art segmentation and tracking algorithm. The comparison
show that our algorithm produces competitive segmentation re-
sults and that efficient search strategies reduce ten times the run-
complexity.
Keywords: Deep belief Networks, lip segmentation, optimization
algorithms, search methods, tracking

1. INTRODUCTION

It is widely accepted that a key issue to robustness in Human Com-
puter interface (HCI) relies on the use of inputs coming from dif-
ferent sensors, offering different modalities of information. An
example is the improved performance which can be achieved in
automatic speech recognition (ASR) systems that use both audio
and video input, rather than only audio [1]. The so called Audio-
Video ASR (AV-ASR) systems have been shown to improve recog-
nition where lip tracking is a crucial and relevant step. Indeed,
traditional acoustic based ASR concentrates solely on the acoustic
features, where the Mel-Frequency Cepstral Coefficients (MFCC)
is widely used feature (e.g., [2]). They can perform satisfactorily in
a quasi noiseless environment or when its conditions are matched
to those presented in the training set. However, these conditions
are not always achievable. One strategy to overpass this limitation
is the integration of visual features from the speaker’s lips. This
is appealing since the visual channel is somewhat orthogonal to
the acoustic channel, i.e., the visual features are unaffected by the
presence of noise environment or cross-talk among speakers.

Robust and accurate lip segmentation requires coping with
several features, such as: large variation in shape and appearance
across subjects caused by illumination conditions, head pose, or fa-
cial expressions. Many techniques have been proposed to achieve
lip segmentation. One of the most traditional approaches rely

This work was supported by project the FCT (ISR/IST plurianual
funding) through the PIDDAC Program funds and supported by project
PTDC/EEA-CRO/103462/2008. ∗This work was partially funded by EU
Project IMASEG3D (PIIF-GA-2009-236173)

solely on deformable models (e.g. [3, 4]), using both deformable
model and parabolic templates [5] or deformable muscle-based
face model as proposed in [6]. Improved Active Shape Models
used in RoHiLTA approach [7] has also been proposed. The suc-
cess of these bottom-up approaches are based on a number of
assumptions about the imaging and motion patterns. However,
the realization of these assumptions may not happen; e.g., the in-
ner/outer part of the object to be segmented may not be distin-
guishable as desired, or the stronger edges may not belong to the
object to be segmented and tracked. Hence, given the visual non-
convexity of the function being optimized in such problems, the
issues above may cause the optimization procedure to get stuck in
local minima. Pattern recognition methods based on regular (not
deep) neural networks have been used before [8] but they still rely
on the use of deformable models with threshold based processing,
which is always a sensitive step, specially to salient regions that do
not belong to the outer lip boundary.

In this paper we introduce a new pattern recognition based
method using Sequential Monte Carlo (SMC) to perform lip track-
ing. This kind of approach holds the most competitive results in
non-rigid tracking problems, but it still faces a few challenges,
such as: (i) the need of a large training set, (ii) robustness against
unseen conditions in the training set, and (iii) run-time complex-
ity of the search process. Recently, there has been a valuable
effort to reduce the search complexity. For instance, in [9] the
marginal space learning (MSL), which partitions the search space
into smaller subspaces, achieves a significant complexity reduc-
tion. Another contribution [10] is a pattern recognition based ap-
proach that, given any position in the search space, the method es-
timates the gradient vector to optimize the segmentation function.
However, the main issue with this approach is the requirement of
a large training set because of the large dimensionality of the pa-
rameter space.

In this paper we address two problems of the pattern recogni-
tion methods, namely: (i) robustness against imaging conditions
not presented in the training set, and (ii) run-time complexity of
the search process. In order to handle the first issue, we propose a
new observation model based on deep belief network (DBN) [11].
The main advantage of the DBN is its ability to provide more ab-
stract feature spaces for classification, which can improve the ro-
bustness of the method to image conditions, and to generate op-
timum image features directly from the image data. In order to
address the complexity issue, we resort to first and second order
optimization algorithms [12]. To accomplish this, we compute the
gradient and Hessian matrix directly from the output classifiers,
imposing no additional requirements for the training set.



2. PROPOSED APPROACH

Here, we aim at computing the expected contour segmentation at
time instant t, St = {si,t}, where si,t ∈ <2 represents the ith
contour sample, with i = 1, ..., N , given the past and current im-
age observations, i.e.

S?
t =

Z

St

St p(St|I1:t, y1,D) dSt, (1)

where I1:t denotes the set of images up to instant t;D = {(I, θ, S, K)i}
is the training set containing M training images Ii, the respective
manual annotations Si and a rigid transformation θ = (x, γ, σ) ∈
<5, with position x ∈ <2, orientation γ ∈ [−π, π], and scale σ ∈
<2; K is the lip stage, i.e., K ∈ {open, semi − open, closed},
(see Fig. 1 for an illustration) and y1 is a random variable indi-
cating the presence of a lip in the window defined by θ given a
specific lip stage. The lip stages represent a prior information (as
in [13]) that will be used in the transition model as we detail in
Section 2.1.

To compute (1), we use particle filtering which approximates
the filtering distribution by a weighted sum of L particles and
weights {Sl

t, w
(l)
t }, with l = 1, . . . , L. Specifically, we use the

sampling importance resampling (SIR) [14]. In the next subsec-
tions we provide details of the transition and observation models
and their combination to build the proposal distribution.

Fig. 1. Three different snapshots taken during a speech. From left
to right, the lip stages are: close, semi-open and open.

2.1. Transition model

From the posterior distribution in (1), we have

p(St|I1:t, y1,D) ∝ p(It|St, y1,D) p(St|I1:t−1, y1,D), (2)

where the transition model is

p(St |I1:t−1, y1,D) = (3)
R
St−1

p(St|St−1, I1:t−1, y1,D) p(St−1|I1:t−1, y1,D)dSt−1.

We build the transition model as follows:

p(St |St−1, I1:t−1, y1,D) = (4)
P

kt−1
p(St|St−1, Kt−1, y1,D) p(Kt−1|St−1, It−1, y1,D),

where p(Kt−1|St−1, Kt−1, It−1, y1,D) is computed with the ob-
servation model (Section 2.2), and

p(St|St−1, I1:t−1, Kt−1, y1,D) =

G(St−1|M(Kt−1)St−1, ΣS), (5)

where M(Kt−1) is a linear transformation applied to St−1, which
is learned from the training data and ΣS is the covariance of the an-
notations also learned from the data set. In summary, the transition
model is represented by a Gaussian mixture model that penalizes
transitions between lip stages.

2.2. Observation model

The observation model from (1) is defined as:

p(It|St, y1,D) ∝ p(St|It, y1,D) p(It|y1,D), (6)

where the second term is assumed to be a constant and the first
term is computed as follows

p(St|It, y1,D) =

Z

θ

p(St|θ, It, y1,D) p(θ|It, y1,D)dθ. (7)

The first and the second terms in (7) are the nonrigid and rigid
parts of the detection, respectively. For the computation of the
nonrigid part, we assume the independence of the contour samples
si,t, i.e.

p(St|θ, It, y1,D) =
Y

i

p(si,t|θ, It, y1,D). (8)

Defining ψ as the parameter vector of the classifier for the nonrigid
contour, we compute (8) as follows:

p(si,t|θ, It, y1,D) =
R

ψ
p(si,t|θ, It, y1,D, ψ) p(ψ|D)dψ (9)

=
R

ψ
p(si,t|θ, It, y1,D) δ(ψ − ψMAP)dψ,

where ψMAP = arg maxψ p({Si}|{(I, θ)i}i=1..M , ψ), δ(.) de-
notes the Dirac delta function, and (S, I, θ) ∈ D. Concerning the
first probability in the result of (9), we train a regressor that indi-
cates the most likely location of the lip border (see Fig. 2). This
means that the nonrigid detection (8) can be rewritten as

p(St|θ, It, y1,D) = (10)Q
i

R
ψ
δ(si,t − sr

i,t(θ, It, y1,D)) δ(ψ − ψMAP)dψ,

where, sr
i,t is the output of the regressor for the ith point. Fig. 2

shows patches used for training and testing the regressor. For in-
stance, given an input patch like the ones displayed on the bottom
right of Fig. 2, the regressor outputs the most likely location of
the transition lip-skin, according to the learned model parameters
ψMAP. Note that we also build a principal component analysis
(PCA) space using the annotations S from D, and the final solu-
tion St from (10) is obtained from a low-dimensional projection
of sr

i,t.
The rigid detection is expressed as

p(θ|It, y1,D) ∝ p(y1|θ, It,D) p(θ|It,D), (11)

where p(θ|It,D) is the prior on the space parameter. For the first
term in (11) the vector of classifier parameters γ is obtained via
MAP estimation, i.e., p(γ|D) = δ(γ − γMAP), so

p(y1|θ, It,D) =
R

γ
p(y1|θ, It,D, γ)δ(γ − γMAP)dγ, (12)

where γMAP = arg maxγ p(y = 1|{(I, θ)i}, γ)i=1..M .
Note that we use DBN as the statistical model for the rigid and

nonrigid classifiers described above. Fig. 2 (top) shows patches
used for training the rigid classifier, Fig. 2 (middle) displays a sub-
set of the features learned by the DBN, which resemble wavelet
features, as also noticed in [11].

2.3. Proposal distribution

The proposal distribution is denoted as follows

q(St|S(l)
1:t−1, I1:t, y1,D) ∼ αqobs(St|Kt, y1, I1:t,D)

+ (1− α)p(St|St−1,D),
(13)



Fig. 2. Patches used for training the rigid classifier (top), subset
of learned features (middle), normal lines from annotation points
used to train the regressor (bottom).

where the first term is the observation model given by

qobs(St|Kt, y1, I1:t,D) =
P
fSt
C p( eSt|It, y1,D)

G(St| eSt, ΣS),
(14)

where eSt denotes the set of the top detections, C is a normaliza-
tion constant and p( eSt|It, y1,D) is the probability response of the
observation model of a given segmentation. The meaning of (14)
is that, the higher is the overlap between the detection of the DBN
and the mixture dynamical model, the larger is its weight. If there
is no overlap between the DBN detection hypotheses and the mix-
ture motion models, then the proposal distribution will be guided
by the transition distribution. In this paper

α = max
eSt

exp{−Kα( eSt − St−1)
T Σ−1

S ( eSt − St−1)}, (15)

where Kα is determined through cross validation.

3. EFFICIENT SEARCH METHODS

For the rigid and nonrigid lip segmentation (1), there is a five di-
mensional space and N dimensions, respectively. This results in
a search space of K5+N samples, which is prohibitive for most
practical values of K ∈ [102, 103] and N ∈ {10, ..., 25}. Run-
ning the search procedure on the image pyramid, with one clas-
sifier per image scale reduces the search space substantially. The
advantage here, is to reduce the number of samples in the coarser
scale to Kcoarse and progressively move to finer scales only the
best Kfine ∈ [10, 30] candidates. Recall that, the search space
procedure in fine scales needs to occur only around the current
search point, which means that we have 35 (3 points in 5 dimen-
sions) samples for each point of the Kfine positions. Furthermore,
performing the nonrigid search after the rigid search, means that
we have a total search space of K5

coarse +(#scales−1)×Kfine×
35 + N .

Our contribution is twofold: (i) reduction of the search space,
and (ii) implementation of efficient search procedures. Concern-
ing the first one, we learn a prior distribution from the training data
on the coarse search space, and sample (via Monte Carlo sampling)
Kcoarse from this distribution. This means that we have a search
space with dimension Kcoarse + (#scales − 1) × Kfine × 35 +
Kfine × N . Regarding the second contribution, we propose two
methods that are used in optimization algorithms: (i) gradient de-
scent and (ii) Newton step [12]. This allows to reduce the exhaus-
tive search of 35 points. These two optimization methods work
for convex functions, however, their use in non-convex functions,

such as the ones produced by the DBN classifier, only work if the
Kcoarse is sufficiently large. In gradient descent, the gradient in
(12) is computed numerically using central differences, represent-
ing a computation of the classifier in 10 points of the search space,
i.e., 5 parameters× 2 points. Limiting the number of iterations,
say, between 1 to 5 for each hypothesis, the search space is re-
duced to 20 to 100 points, which is smaller than 35. Theoretically
speaking, a faster convergence can be achieved with the Newton
step, but the computation of the Hessian matrix, gradient and line
search requires 25+10 search space points. Limiting the number of
iterations between 1 and 5, means that the complexity of this step
for one hypothesis is between 35 and 175, which is also smaller
than 35.

3.1. Training and detection procedures

For the training of the observation model, we used 1000 images
(from 10 sequences) of lip annotations. For the rigid classifier, an
image scale space is built, i.e., L(x, σ) = G(x, σ) ? I(x), where
G(.) is the Gaussian kernel, I is the input image, σ is the image
scale, and x is the image coordinate.

For the rigid part, we separately train three classifiers (12);
one for each scale σ = {2, 4, 8}. The positive and negative train-
ing sets are defined based on a different scale dependent margin
mσ that increases by a factor of two after each octave. Thus, the
positive set for L(x, σ), is randomly generated inside the interval
[θ − mσ/2, θ + mσ/2]; the negative set is randomly generated
outside of the interval [θ − mσ, θ + mσ], where θ is the vector
containing the parameters of the rigid transformation of the lips
annotations. See positive patches in Fig. 2 (top).

For the nonrigid part, the regressor (10) is trained at σ = 2,
where each training sample is a normal line of 41 pixels (see Fig.
2 bottom for an illustration) and the label to learn is the pixel in-
dex in the interval [1, ..., 41] that is closest to the lip boundary.
The structure of the DBN was determined using cross validation.
Finally, we have Kcoarse = 103 and Kfine = 10. For the SIR al-
gorithm, the following parameters were determined through cross
validation: (i) number of particles: 100; (ii) Kα = 0.1 (see (15)).

4. EXPERIMENTAL RESULTS

The performance of the tracker was measured by comparing the
contour estimates with the bottom-up MMDA (Multiple Model
Data Association) tracker [15]. This tracker provides state-of-the-
art results in the problem of heart tracking, which shares several
of the challenges present in lip tracking (e.g., varying texture and
image conditions and appearance changes caused not only by mo-
tion). In MMDA, an initial contour is manually drawn in the first
frame of the sequence. From this initial contour, a validation gate
is built from which a discriminant Fisher classifier is trained, al-
lowing to distinguish between lip and skin. Comparing to the
MMDA, the advantages of the approach presented in this paper
are the following: (i) does not need an initial segmentation guess;
(ii) presents robustness to changing light conditions throughout
the sequence and (iii) does not overfit the test sequence (i.e., it
does not need to train a Fisher classifier for every new test image).

To evaluate the performance of the method, a manual ground
truth (GT) is provided for all the images in the sequences. We use
the Hammoude distance (as in [15]) to compare the contours of the
manual GT and the output of the MMDA and the DBN trackers.

From the results, the proposed method exhibits advantages in
the sequences containing brightness (see Fig. 3 seq. #1), low
contrast between skin and lips (seq. #7), and the presence of noise
(seq. #2 contains a face with a beard). However, the method still
needs a representative training set. For example, seq. #3 and seq.



(a) (b) (c)
Fig. 3. Results obtained for the sequences #1, #2, #3, #7 and #8 with full search (a), Newton (b) and gradient (c) search methods. The
quantitative results for each row is shown in Table.1.

Table 1. Quantitative results with the Hammoude mean distances
in eight sequences.

GradDes Newton Full search MMDA
dHseq1 0.11 0.10 0.11 0.13

dHseq2 0.09 0.10 0.09 0.12

dHseq3 0.17 0.32 0.18 0.10
dHseq4 0.12 0.13 0.12 0.11
dHseq5 0.08 0.08 0.09 0.10

dHseq6 0.11 0.13 0.11 0.11
dHseq7 0.15 0.18 0.12 0.17

dHseq8 0.13 0.13 0.14 0.08

#8 (Fig. 3) contain sequences that are not well represented in the
training set.

The run-time average complexity obtained for the search strate-
gies in terms of floating point operations are the following: (i)
Full: O(3.5 × 1011); (ii) GradDesc: O(2.0 × 1010) and (iii)
Newton: O(3.0× 1010).

Efficient search methods (EFM) perform as well as the full
search method with a ten times smaller run-time complexity (Table
1). In fact, for sequences where the full strategy is doing well,
the EFM usually improves the Hammoude distance. However, for
sequences that the full method performs poorly (e.g., seq. #3), the
EFM worsen even more the results, which shows that robustness
of our method is related to the richness of the training set.

5. CONCLUSIONS

In this paper we proposed a pattern recognition algorithm that can
be applied to non-rigid tracking problems, such as the lip tracking.
In this framework, we showed solutions to the following problems:
robustness to imaging conditions and efficient search process. Re-
garding the robustness, the results have shown that the proposed
algorithm is robust against imaging conditions noise and transition
between the lips and skin. Concerning the efficiency of the search
process, we have shown that the proposed search strategies allow
to reduce ten times the run-time complexity while maintaining the
tracking accuracy. Future work will address the reduction of the

training data needed for the pattern recognition based methods.

6. REFERENCES

[1] R. Goecke, “Audio-video automatic speech recognition: an example of im-
proved performance through multimodal sensor input,” in Multimodal user in-
teraction workshop, vol. 57, 2005.

[2] M. Chan, Y. Zhang, and T. Huang, “Real time lip tracking and bimodal continu-
ous speech recognition,” in IEEE 2nd Wokshop Multimedia Signal Processing,
1998, pp. 65–70.

[3] P. Aleksic, J. Williams, Z. Wu, and A. Katsaggelos, “Audiovisual speech
recognition using mpeg-4 compliant visual features,” EURASIP J. Appl. Sig-
nal Processing, vol. 11, no. 5, pp. 1213–1227, 2002.

[4] N. Paragios, “A level set approach for shape-driven segmentation and tracking
of the left ventricle,” IEEE Trans. Med. Imag., vol. 21, no. 9, pp. 773–776,
2003.

[5] Z. Wu, P. Aleksic, and A. K. Katsaggelos, “Lip tracking for MPEG-4 facial
animation,” in IEEE Int. Conf. on Multimodal Interfaces, 2002.

[6] H. Seyedarabi, A. Aghagolzadeh, and S. Khanmohammadi, “Facial expres-
sions animation and lip tracking using facial characteristic points and de-
formable model,” Int. Journal of Information Technology, vol. 1, no. 4, pp.
416–419, 2004.

[7] L. Xie, X. Cai, Z. Fu, R. Zhao, and D. Jiang, “A robust hierarchical lip tracking
approach for lipreading and audio visual speech recognition,” in Int. Conf. on
Machine Learning and Cybernetics, 2004.

[8] H. Seyedarabi, W. Lee, and A. Aghagolzadeh, “Automatic lip tracking and ac-
tion units classification using two-step active contours and probabilistic neural
networks,” in CCECE, 2006, pp. 2021–2024.

[9] Y. Z. et al., “Four-chamber heart modeling and automatic segmentation for
3D cardiac CT volumes using marginal space learning and steerable features,”
IEEE Trans. Med. Imag., vol. 17, no. 3, pp. 392–406, 2008.

[10] S. Zhou and D. Comaniciu, “Shape regression machine,” in IPMI, 2007, pp.
13–25.

[11] S. Salakhutdinov and G. Hinton, “Learning a non-linear embedding by pre-
serving class neighbourhood structure,” in AI and Statisitcs, 2007.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[13] Y.-L. Tian, T. Kanade, and J. Cohn, “Robust lip tracking by combining shape,
color and motion,” in Proc. of the 4th Asian Conf. on Computer Vision, 2000.

[14] A. Doucet, N. de Freitas, N. Gordon, and A. Smith, Sequential Monte Carlo
Methods in Practice. Springer Verlag, 2001.

[15] J. C. Nascimento and J. S. Marques, “Robust shape tracking with multiple
models in ultrasound images,” IEEE Trans. Imag. Proc., vol. 3, no. 17, pp.
392–406, 2008.


